Overview
MNT Balance
MNT Value
$0.00Latest 25 from a total of 105 transactions
| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
| Claim | 71911732 | 435 days ago | IN | 0 MNT | 0.00857273 | ||||
| Claim | 71911506 | 435 days ago | IN | 0 MNT | 0.00830704 | ||||
| Claim | 71882049 | 435 days ago | IN | 0 MNT | 0.00884507 | ||||
| Claim | 71863527 | 436 days ago | IN | 0 MNT | 0.00743208 | ||||
| Claim | 71783209 | 438 days ago | IN | 0 MNT | 0.00806342 | ||||
| Claim | 71778128 | 438 days ago | IN | 0 MNT | 0.00918574 | ||||
| Claim | 71777999 | 438 days ago | IN | 0 MNT | 0.0089092 | ||||
| Claim | 71760825 | 438 days ago | IN | 0 MNT | 0.0080498 | ||||
| Claim | 71760724 | 438 days ago | IN | 0 MNT | 0.00795707 | ||||
| Claim | 71756088 | 438 days ago | IN | 0 MNT | 0.00800047 | ||||
| Claim | 71745604 | 439 days ago | IN | 0 MNT | 0.00958567 | ||||
| Claim | 71745435 | 439 days ago | IN | 0 MNT | 0.00857485 | ||||
| Claim | 71739057 | 439 days ago | IN | 0 MNT | 0.00863711 | ||||
| Claim | 71738975 | 439 days ago | IN | 0 MNT | 0.00865582 | ||||
| Claim | 71729878 | 439 days ago | IN | 0 MNT | 0.0091669 | ||||
| Claim | 71729246 | 439 days ago | IN | 0 MNT | 0.00870697 | ||||
| Claim | 71728993 | 439 days ago | IN | 0 MNT | 0.00882416 | ||||
| Claim | 71728865 | 439 days ago | IN | 0 MNT | 0.00869039 | ||||
| Claim | 71721258 | 439 days ago | IN | 0 MNT | 0.00869332 | ||||
| Claim | 71721157 | 439 days ago | IN | 0 MNT | 0.00916491 | ||||
| Claim | 71714421 | 439 days ago | IN | 0 MNT | 0.00892012 | ||||
| Claim | 71708067 | 439 days ago | IN | 0 MNT | 0.00919893 | ||||
| Claim | 71707980 | 439 days ago | IN | 0 MNT | 0.00934157 | ||||
| Claim | 71703091 | 440 days ago | IN | 0 MNT | 0.010823 | ||||
| Claim | 71702915 | 440 days ago | IN | 0 MNT | 0.01048841 |
Latest 3 internal transactions
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 71644203 | 441 days ago | 5,016 MNT | ||||
| 71642419 | 441 days ago | Contract Creation | 0 MNT | |||
| 71599212 | 442 days ago | Contract Creation | 0 MNT |
Cross-Chain Transactions
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.21;
import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/Pausable.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import "./ERC20TokenWrapped.sol";
import "./interface/IToken.sol";
contract TGPool is Ownable, Pausable, ReentrancyGuard {
// IDO Token A :MNT
address public idoTokenA;
// 1MNT = 200000 TokenB
uint256 public idoTokenAPrice;
// IDO Token A hardcore 50000 MNT
uint256 public idoTokenAMaxAmount;
// IDO Token A lower limit 1000 MNT
uint256 public idoTokenAMinAmount;
// realAMount IDO 30000 MNT
uint256 public idoAmount;
// IDO 500MNT per address
uint256 public idoMaxAmountPerAddress;
// IDO Token B
string public tokenName;
string public tokenSymbol;
address public tokenBAddress;
IToken public tokenB;
// Token B cap = idoAmount * idoTokenAPrice
uint256 public tokenCap;
// token B for user claim 79% = tokenCap % 790/1000
uint256 public tokenRewardClaimRate;
uint256 public tokenRewardClaimAmount;
//token B for meme creater 1% = 10/1000
uint256 public tokenRewardCreaterRate;
uint256 public tokenRewardCreaterAmount;
// Token B for dex = tokenCap % 190/1000
uint256 public tokenDexRate;
uint256 public tokenDexAmount;
// Token B、MNT platform fee 1% = 10/1000
uint256 public tokenFeeRate;
uint256 public tokenFeeAmount;
uint256 public tokenFeeAmountMNT;
// IDO start time
uint256 public idoStartTime;
// IDO endtime = Claim start time
uint256 public idoEndTime;
// claim 6days
uint256 public claimEndTime;
// claim over 30 days ,user can't claim
uint256 public claimOverTime;
// 79% tken b for user claim
uint256 public rewardPerSecond;
// how many address join ido
//feature 1
uint256 public idoAddressAmountTotal;
// merkle root for meme creater and voter
bytes32 public merkleRoot;
//merkle claim amount
uint256 public merkleClaimAmount;
// merkle claimed
mapping(address => bool) public merkleClaimed;
// IDO
mapping(address => uint256) public idoAddressAmount;
// Claim last time
mapping(address => uint256) public lastClaimTime;
//feature2
//user claimed amount
mapping(address => uint256) public userClaimAmount;
// idoamount < idominamount user withdraw
mapping(address => bool) public userWithdrawed;
mapping(address => bool) public Admins;
//claim amount
uint256 public claimedAmount;
// owner withdraw fee
bool public OwnerWithdrawed;
// owner mint tokenb
bool public isMintTokenB;
// owner update merkle root
bool public isUpdateMerkleRoot;
ERC20TokenWrapped token;
using SafeERC20 for IERC20;
event Deposit(address indexed user, uint256 amount);
event Claimed(address indexed user, uint256 amount);
event Withdraw(address token, uint256 amount);
event Received(address sender, uint256 amount);
event TokenCreate(address token, uint256 amount);
event TokenMint(address to, uint256 amount);
event WithdrawLiquidity(address to, uint256 amount);
event MerkleRootUpdated(bytes32 merkleRoot);
event MerkleClaimed(address indexed user, uint256 amount);
modifier onlyValidAddress(address addr) {
require(addr != address(0), "Illegal address");
_;
}
modifier onlyAdmin() {
require(
Admins[_msgSender()] == true,
"Token Distributor::onlySendUser: Not SendUser"
);
_;
}
/*
* @dev
* @param _idoTokenA IDO Token A address.
* @param _idoTokenAPrice IDO Token A price.
* @param _idoTokenAAmount IDO Token A amount.
* @param _idoMaxAmountPerAddress IDO max amount per address.
* @param _tokenName Token B name.
* @param _tokenSymbol Token B symbol.
*/
constructor(
address _idoTokenA,
uint256 _idoTokenAPrice,
uint256 _idoTokenAMaxAmount,
uint256 _idoTokenAMinAmount,
uint256 _idoMaxAmountPerAddress,
string memory _tokenName,
string memory _tokenSymbol,
uint256 _idoStartTime,
uint256 _idoEndTime,
uint256 _tokenRewardClaimRate,
uint256 _tokenRewardCreaterRate,
uint256 _tokenDexRate,
uint256 _tokenFeeRate,
address factoryOwner
) Ownable(_msgSender()) {
idoTokenA = _idoTokenA;
idoTokenAPrice = _idoTokenAPrice;
idoTokenAMaxAmount = _idoTokenAMaxAmount;
idoTokenAMinAmount = _idoTokenAMinAmount;
idoMaxAmountPerAddress = _idoMaxAmountPerAddress;
tokenName = _tokenName;
tokenSymbol = _tokenSymbol;
idoStartTime = _idoStartTime;
idoEndTime = _idoEndTime;
// require(
// _tokenRewardClaimRate + _tokenRewardCreaterRate + _tokenDexRate ==
// 1000,
// "rate total need be 1000"
// );
// for user claim 48% 480
tokenRewardClaimRate = _tokenRewardClaimRate;
// for memecreater 2% 20
tokenRewardCreaterRate = _tokenRewardCreaterRate;
// for dex 50% 500
tokenDexRate = _tokenDexRate;
// for platform fee 0% 0
tokenFeeRate = _tokenFeeRate;
claimEndTime = idoEndTime + 6 days;
claimOverTime = idoEndTime + 30 days;
Admins[_msgSender()] = true;
Admins[factoryOwner] = true;
}
/**
* @dev Deposit for the IDO.
*/
function _deposit(uint256 amount) private whenNotPaused nonReentrant {
require(
idoAddressAmount[_msgSender()] + amount <= idoMaxAmountPerAddress,
"Exceeds the max amount per address"
);
require(idoAmount + amount <= idoTokenAMaxAmount, "IDO amount is full");
idoAddressAmount[_msgSender()] += amount;
idoAmount += amount;
idoAddressAmountTotal += 1;
emit Deposit(_msgSender(), amount);
}
function DepositMNT() public payable whenNotPaused {
require(block.timestamp >= idoStartTime, "IDO time is not valid");
require(block.timestamp <= idoEndTime, "IDO time is not valid");
require(idoTokenA == address(0), "Cannot deposit with erc20 token");
_deposit(msg.value);
}
// ido failed idoAmount< idoTokenAAmount
function withdrawMNTByUser() public whenNotPaused nonReentrant {
require(
block.timestamp >= idoEndTime,
"Claim time must be after ido end time"
);
require(idoAmount < idoTokenAMinAmount, "ido not full,failed");
uint256 amount = idoAddressAmount[_msgSender()];
require(amount > 0, "No deposit amount");
idoAddressAmount[_msgSender()] = 0;
idoAmount -= amount;
(bool success, ) = payable(_msgSender()).call{value: amount}("");
require(success, "Native Token Transfer Failed");
userWithdrawed[_msgSender()] = true;
emit Withdraw(address(0), amount);
}
// idoendtime mint token B
function mintTokenB() public onlyAdmin {
require(
block.timestamp >= idoEndTime,
"Claim time must be after ido end time"
);
require(tokenCap == 0, "Token B has been minted");
require(idoAmount >= idoTokenAMinAmount, "IDO amount is not enough");
tokenCap = idoAmount * idoTokenAPrice;
rewardPerSecond =
(tokenCap * tokenRewardClaimRate) /
(claimEndTime - idoEndTime);
token = new ERC20TokenWrapped(
tokenName,
tokenSymbol,
uint8(18),
tokenCap
);
tokenBAddress = address(token);
emit TokenCreate(address(token), tokenCap);
tokenB = IToken(tokenBAddress);
tokenB.mint(address(this), tokenCap);
emit TokenMint(address(this), tokenCap);
// for user claim 48%
tokenRewardClaimAmount = (tokenCap * tokenRewardClaimRate) / 1000;
// for meme creater 2%
tokenRewardCreaterAmount = (tokenCap * tokenRewardCreaterRate) / 1000;
// for dex 50%
tokenDexAmount = (tokenCap * tokenDexRate) / 1000;
tokenFeeAmount = (tokenCap * tokenFeeRate) / 1000;
tokenFeeAmountMNT = (idoAmount * tokenFeeRate) / 1000;
rewardPerSecond = tokenRewardClaimAmount / (claimEndTime - idoEndTime);
isMintTokenB = true;
}
function updateMerkleRoot(
bytes32 _merkleRoot,
uint256 amount
) public onlyAdmin {
require(isMintTokenB, "Token B has not been minted");
require(
amount == tokenRewardCreaterAmount,
"Merkle root Amount : Invalid amount"
);
require(!isUpdateMerkleRoot, "Merkle Root has been updated");
merkleRoot = _merkleRoot;
isUpdateMerkleRoot = true;
emit MerkleRootUpdated(_merkleRoot);
}
// amount need decimals
function merkleClaim(
bytes32[] calldata proof,
uint256 amount
) external whenNotPaused nonReentrant {
require(isUpdateMerkleRoot, "Merkle Root has not been updated");
require(
merkleClaimAmount + amount <= tokenRewardCreaterAmount,
"Merkle Claim: Invalid amount"
);
require(!merkleClaimed[_msgSender()], "Merkle Claim: Already claimed");
// (1)
bytes32 leaf = keccak256(
bytes.concat(keccak256(abi.encode(_msgSender(), amount)))
);
// (2)
require(MerkleProof.verify(proof, merkleRoot, leaf), "Invalid proof");
require(
tokenB.transfer(_msgSender(), amount),
"TokenAirdrop: Transfer failed"
);
merkleClaimAmount += amount;
merkleClaimed[_msgSender()] = true;
emit MerkleClaimed(_msgSender(), amount);
}
function withdrawLiquidity(address _to) public onlyAdmin {
require(isMintTokenB, "Token B has not been minted");
//100% MNT
uint256 mntAmount = idoAmount - tokenFeeAmountMNT;
require(mntAmount > 0, "No MNT to withdraw");
(bool success, ) = payable(_to).call{value: mntAmount}("");
require(success, "Native Token Transfer Failed");
// 50% tokenB
tokenB.transfer(_to, tokenDexAmount);
emit WithdrawLiquidity(_to, mntAmount);
}
/**
* @dev Claims the IDO.
* 用户参与IDO后,结束时间后可领取IDO Token B 线性解锁
*/
function claim() public whenNotPaused nonReentrant {
require(
block.timestamp >= idoEndTime,
"Claim time must be after ido end time"
);
require(
block.timestamp <= claimOverTime,
"Claim time must be before claim over time"
);
require(isMintTokenB, "Token B has not been minted");
uint256 _now = block.timestamp;
if (block.timestamp > claimEndTime) {
_now = claimEndTime;
}
uint256 _start = lastClaimTime[_msgSender()];
if (_start == 0) {
_start = idoEndTime;
}
uint256 amount = ((_now - _start) *
rewardPerSecond *
idoAddressAmount[_msgSender()]) / idoAmount;
require(amount > 0, "No claimable amount");
tokenB.transfer(_msgSender(), amount);
emit Claimed(_msgSender(), amount);
lastClaimTime[_msgSender()] = block.timestamp;
userClaimAmount[_msgSender()] += amount;
claimedAmount += amount;
}
/**
* @dev Withdraws the token.
* 1% MNT +1%的tokenB 给平台, 1%的tokenB给MEME创建者
*
*/
function withdrawFee(address _to) public onlyAdmin {
require(!OwnerWithdrawed, "Owner has withdrawed");
require(
block.timestamp >= idoEndTime,
"Claim time must be after ido end time"
);
require(isMintTokenB, "Token B has not been minted");
// for platform 1% tokenB + 1% MNT
require(tokenFeeAmount > 0, "fee is 0,can't withdraw");
tokenB.transfer(_to, tokenFeeAmount);
(bool success, ) = payable(_to).call{value: tokenFeeAmountMNT}("");
require(success, "Native Token Transfer Failed");
emit Withdraw(address(0), tokenFeeAmountMNT);
// // for meme creator
// IERC20(tokenBAddress).transfer(owner(), tokenRewardCreaterAmount);
OwnerWithdrawed = true;
}
/**
* @dev Withdraw token After claimOverTime.
*
*/
function withdrawERC20(address _token, address _to) public onlyAdmin {
require(
block.timestamp >= claimOverTime,
"Claim time must be after ido end time"
);
uint256 amount = IERC20(_token).balanceOf(address(this));
IERC20(_token).safeTransfer(_to, amount);
emit Withdraw(_token, amount);
}
/**
* @dev Withdraw MNT After claimOverTime.
*
*/
function withdrawMNTAfterOverTime(address _to) public onlyAdmin {
require(
block.timestamp >= claimOverTime,
"Claim time must be after ido end time"
);
uint256 balance = address(this).balance;
require(balance > 0, "No native token to withdraw");
// Use call method for safer Ether transfer
(bool success, ) = payable(_to).call{value: balance}("");
require(success, "Withdrawable: Native Token transfer failed");
emit Withdraw(address(0), balance);
}
/**
* @dev Pauses the contract.
*/
function pause() public onlyAdmin {
_pause();
emit Paused(_msgSender());
}
/**
* @dev Unpauses the contract.
*/
function unpause() public onlyAdmin {
_unpause();
emit Unpaused(_msgSender());
}
// Function to receive MNT
receive() external payable {
emit Received(_msgSender(), msg.value);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Skips emitting an {Approval} event indicating an allowance update. This is not
* required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
*
* ```solidity
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner` s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance != type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol)
pragma solidity ^0.8.20;
import {ERC20} from "../ERC20.sol";
import {Context} from "../../../utils/Context.sol";
/**
* @dev Extension of {ERC20} that allows token holders to destroy both their own
* tokens and those that they have an allowance for, in a way that can be
* recognized off-chain (via event analysis).
*/
abstract contract ERC20Burnable is Context, ERC20 {
/**
* @dev Destroys a `value` amount of tokens from the caller.
*
* See {ERC20-_burn}.
*/
function burn(uint256 value) public virtual {
_burn(_msgSender(), value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, deducting from
* the caller's allowance.
*
* See {ERC20-_burn} and {ERC20-allowance}.
*
* Requirements:
*
* - the caller must have allowance for ``accounts``'s tokens of at least
* `value`.
*/
function burnFrom(address account, uint256 value) public virtual {
_spendAllowance(account, _msgSender(), value);
_burn(account, value);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Capped.sol)
pragma solidity ^0.8.20;
import {ERC20} from "../ERC20.sol";
/**
* @dev Extension of {ERC20} that adds a cap to the supply of tokens.
*/
abstract contract ERC20Capped is ERC20 {
uint256 private immutable _cap;
/**
* @dev Total supply cap has been exceeded.
*/
error ERC20ExceededCap(uint256 increasedSupply, uint256 cap);
/**
* @dev The supplied cap is not a valid cap.
*/
error ERC20InvalidCap(uint256 cap);
/**
* @dev Sets the value of the `cap`. This value is immutable, it can only be
* set once during construction.
*/
constructor(uint256 cap_) {
if (cap_ == 0) {
revert ERC20InvalidCap(0);
}
_cap = cap_;
}
/**
* @dev Returns the cap on the token's total supply.
*/
function cap() public view virtual returns (uint256) {
return _cap;
}
/**
* @dev See {ERC20-_update}.
*/
function _update(address from, address to, uint256 value) internal virtual override {
super._update(from, to, value);
if (from == address(0)) {
uint256 maxSupply = cap();
uint256 supply = totalSupply();
if (supply > maxSupply) {
revert ERC20ExceededCap(supply, maxSupply);
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)
pragma solidity ^0.8.20;
import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";
/**
* @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
bytes32 private constant PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
/**
* @dev Permit deadline has expired.
*/
error ERC2612ExpiredSignature(uint256 deadline);
/**
* @dev Mismatched signature.
*/
error ERC2612InvalidSigner(address signer, address owner);
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC-20 token name.
*/
constructor(string memory name) EIP712(name, "1") {}
/**
* @inheritdoc IERC20Permit
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
if (block.timestamp > deadline) {
revert ERC2612ExpiredSignature(deadline);
}
bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(hash, v, r, s);
if (signer != owner) {
revert ERC2612InvalidSigner(signer, owner);
}
_approve(owner, spender, value);
}
/**
* @inheritdoc IERC20Permit
*/
function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
return super.nonces(owner);
}
/**
* @inheritdoc IERC20Permit
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
return _domainSeparatorV4();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Address.sol)
pragma solidity ^0.8.20;
import {Errors} from "./Errors.sol";
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev There's no code at `target` (it is not a contract).
*/
error AddressEmptyCode(address target);
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
if (address(this).balance < amount) {
revert Errors.InsufficientBalance(address(this).balance, amount);
}
(bool success, ) = recipient.call{value: amount}("");
if (!success) {
revert Errors.FailedCall();
}
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason or custom error, it is bubbled
* up by this function (like regular Solidity function calls). However, if
* the call reverted with no returned reason, this function reverts with a
* {Errors.FailedCall} error.
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
if (address(this).balance < value) {
revert Errors.InsufficientBalance(address(this).balance, value);
}
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
* was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
* of an unsuccessful call.
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata
) internal view returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
// only check if target is a contract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
if (returndata.length == 0 && target.code.length == 0) {
revert AddressEmptyCode(target);
}
return returndata;
}
}
/**
* @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
* revert reason or with a default {Errors.FailedCall} error.
*/
function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
if (!success) {
_revert(returndata);
} else {
return returndata;
}
}
/**
* @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
*/
function _revert(bytes memory returndata) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
assembly ("memory-safe") {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert Errors.FailedCall();
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
string private _nameFallback;
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @dev See {IERC-5267}.
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol)
pragma solidity ^0.8.20;
/**
* @dev Library of standard hash functions.
*
* _Available since v5.1._
*/
library Hashes {
/**
* @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
*
* NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
*/
function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a);
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/
function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
assembly ("memory-safe") {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
// This file was procedurally generated from scripts/generate/templates/MerkleProof.js.
pragma solidity ^0.8.20;
import {Hashes} from "./Hashes.sol";
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*
* IMPORTANT: Consider memory side-effects when using custom hashing functions
* that access memory in an unsafe way.
*
* NOTE: This library supports proof verification for merkle trees built using
* custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
* leaf inclusion in trees built using non-commutative hashing functions requires
* additional logic that is not supported by this library.
*/
library MerkleProof {
/**
*@dev The multiproof provided is not valid.
*/
error MerkleProofInvalidMultiproof();
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in memory with the default hashing function.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in memory with the default hashing function.
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in memory with a custom hashing function.
*/
function verify(
bytes32[] memory proof,
bytes32 root,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processProof(proof, leaf, hasher) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in memory with a custom hashing function.
*/
function processProof(
bytes32[] memory proof,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = hasher(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with the default hashing function.
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with the default hashing function.
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with a custom hashing function.
*/
function verifyCalldata(
bytes32[] calldata proof,
bytes32 root,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processProofCalldata(proof, leaf, hasher) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with a custom hashing function.
*/
function processProofCalldata(
bytes32[] calldata proof,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = hasher(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in memory with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProof}.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in memory with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = Hashes.commutativeKeccak256(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in memory with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProof}.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processMultiProof(proof, proofFlags, leaves, hasher) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in memory with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = hasher(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in calldata with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProofCalldata}.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in calldata with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = Hashes.commutativeKeccak256(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in calldata with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProofCalldata}.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in calldata with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = hasher(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)
pragma solidity ^0.8.20;
/**
* @dev Collection of common custom errors used in multiple contracts
*
* IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
* It is recommended to avoid relying on the error API for critical functionality.
*
* _Available since v5.1._
*/
library Errors {
/**
* @dev The ETH balance of the account is not enough to perform the operation.
*/
error InsufficientBalance(uint256 balance, uint256 needed);
/**
* @dev A call to an address target failed. The target may have reverted.
*/
error FailedCall();
/**
* @dev The deployment failed.
*/
error FailedDeployment();
/**
* @dev A necessary precompile is missing.
*/
error MissingPrecompile(address);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2²⁵⁶ + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= prod1) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 exp;
unchecked {
exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
value >>= exp;
result += exp;
exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
value >>= exp;
result += exp;
exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
value >>= exp;
result += exp;
exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
value >>= exp;
result += exp;
exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
value >>= exp;
result += exp;
exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
value >>= exp;
result += exp;
exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
value >>= exp;
result += exp;
result += SafeCast.toUint(value > 1);
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
uint256 isGt;
unchecked {
isGt = SafeCast.toUint(value > (1 << 128) - 1);
value >>= isGt * 128;
result += isGt * 16;
isGt = SafeCast.toUint(value > (1 << 64) - 1);
value >>= isGt * 64;
result += isGt * 8;
isGt = SafeCast.toUint(value > (1 << 32) - 1);
value >>= isGt * 32;
result += isGt * 4;
isGt = SafeCast.toUint(value > (1 << 16) - 1);
value >>= isGt * 16;
result += isGt * 2;
result += SafeCast.toUint(value > (1 << 8) - 1);
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides tracking nonces for addresses. Nonces will only increment.
*/
abstract contract Nonces {
/**
* @dev The nonce used for an `account` is not the expected current nonce.
*/
error InvalidAccountNonce(address account, uint256 currentNonce);
mapping(address account => uint256) private _nonces;
/**
* @dev Returns the next unused nonce for an address.
*/
function nonces(address owner) public view virtual returns (uint256) {
return _nonces[owner];
}
/**
* @dev Consumes a nonce.
*
* Returns the current value and increments nonce.
*/
function _useNonce(address owner) internal virtual returns (uint256) {
// For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
// decremented or reset. This guarantees that the nonce never overflows.
unchecked {
// It is important to do x++ and not ++x here.
return _nonces[owner]++;
}
}
/**
* @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
*/
function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
uint256 current = _useNonce(owner);
if (nonce != current) {
revert InvalidAccountNonce(owner, current);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
bool private _paused;
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
/**
* @dev The operation failed because the contract is paused.
*/
error EnforcedPause();
/**
* @dev The operation failed because the contract is not paused.
*/
error ExpectedPause();
/**
* @dev Initializes the contract in unpaused state.
*/
constructor() {
_paused = false;
}
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
if (paused()) {
revert EnforcedPause();
}
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
if (!paused()) {
revert ExpectedPause();
}
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
assembly ("memory-safe") {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {setWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
}// SPDX-License-Identifier: GPL-3.0
// Implementation of permit based on https://github.com/WETH10/WETH10/blob/main/contracts/WETH10.sol
pragma solidity 0.8.21;
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Capped.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import "@openzeppelin/contracts/access/Ownable.sol";
contract ERC20TokenWrapped is ERC20Permit, ERC20Capped, Ownable, ERC20Burnable {
// Decimals
uint8 private immutable _decimals;
constructor(
string memory name,
string memory symbol,
uint8 __decimals,
uint256 __cap
)
ERC20(name, symbol)
ERC20Permit(name)
ERC20Capped(__cap)
Ownable(msg.sender)
{
_decimals = __decimals;
}
function mint(address to, uint256 value) external onlyOwner {
_mint(to, value);
}
function decimals() public view virtual override returns (uint8) {
return _decimals;
}
// Blacklist restrict from-address, contains(burn's from-address)
function _update(
address from,
address to,
uint256 value
) internal virtual override(ERC20, ERC20Capped) {
ERC20Capped._update(from, to, value);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.21;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
interface IToken is IERC20 {
function mint(address to, uint256 amount) external;
}{
"optimizer": {
"enabled": true,
"runs": 200
},
"viaIR": true,
"evmVersion": "paris",
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_idoTokenA","type":"address"},{"internalType":"uint256","name":"_idoTokenAPrice","type":"uint256"},{"internalType":"uint256","name":"_idoTokenAMaxAmount","type":"uint256"},{"internalType":"uint256","name":"_idoTokenAMinAmount","type":"uint256"},{"internalType":"uint256","name":"_idoMaxAmountPerAddress","type":"uint256"},{"internalType":"string","name":"_tokenName","type":"string"},{"internalType":"string","name":"_tokenSymbol","type":"string"},{"internalType":"uint256","name":"_idoStartTime","type":"uint256"},{"internalType":"uint256","name":"_idoEndTime","type":"uint256"},{"internalType":"uint256","name":"_tokenRewardClaimRate","type":"uint256"},{"internalType":"uint256","name":"_tokenRewardCreaterRate","type":"uint256"},{"internalType":"uint256","name":"_tokenDexRate","type":"uint256"},{"internalType":"uint256","name":"_tokenFeeRate","type":"uint256"},{"internalType":"address","name":"factoryOwner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"MerkleClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"name":"MerkleRootUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Received","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TokenCreate","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TokenMint","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"WithdrawLiquidity","type":"event"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"Admins","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DepositMNT","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"OwnerWithdrawed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimEndTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimOverTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"idoAddressAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"idoAddressAmountTotal","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"idoAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"idoEndTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"idoMaxAmountPerAddress","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"idoStartTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"idoTokenA","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"idoTokenAMaxAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"idoTokenAMinAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"idoTokenAPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isMintTokenB","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isUpdateMerkleRoot","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"lastClaimTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"merkleClaim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"merkleClaimAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"merkleClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"merkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintTokenB","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewardPerSecond","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenB","outputs":[{"internalType":"contract IToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenBAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenCap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenDexAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenDexRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenFeeAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenFeeAmountMNT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenFeeRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenName","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenRewardClaimAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenRewardClaimRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenRewardCreaterAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenRewardCreaterRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenSymbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_merkleRoot","type":"bytes32"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"updateMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userClaimAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"userWithdrawed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_to","type":"address"}],"name":"withdrawERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"}],"name":"withdrawFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"}],"name":"withdrawLiquidity","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"}],"name":"withdrawMNTAfterOverTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawMNTByUser","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]Contract Creation Code
60406080815234620004dd57620045d8803803806200001e81620004e2565b92833981016101c082820312620004dd576200003a8262000508565b91602081015184820151606083015160808401519460a085015160018060401b038111620004dd5781620000709187016200051d565b60c086015190916001600160401b038211620004dd57620000939187016200051d565b60e0860151916101008701519761012088015194610140890151966101608a015198620000ca6101a06101808d01519c0162000508565b9c3315620004c5576000543360018060a01b0382167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a36001600160a81b0319163360ff60a01b19161760005560018055600280546001600160a01b0319166001600160a01b03929092169190911790556003556004556005556007558051906001600160401b038211620003b95760085490600182811c92168015620004ba575b6020831014620003985781601f84931162000459575b50602090601f8311600114620003db57600092620003cf575b50508160011b916000199060031b1c1916176008555b8051906001600160401b038211620003b95760095490600182811c92168015620003ae575b6020831014620003985781601f84931162000334575b50602090601f8311600114620002b657600092620002aa575b50508160011b916000199060031b1c1916176009555b60165584601755600d55600f556011556013556207e9008101808211620002945760185562278d0081018091116200029457601955336000526023602052816000209060ff199160018382541617905560018060a01b031660005260018260002091825416179055516140089081620005908239f35b634e487b7160e01b600052601160045260246000fd5b01519050388062000208565b600960009081529350600080516020620045b883398151915291905b601f198416851062000318576001945083601f19811610620002fe575b505050811b016009556200021e565b015160001960f88460031b161c19169055388080620002ef565b81810151835560209485019460019093019290910190620002d2565b6009600052909150600080516020620045b8833981519152601f840160051c810191602085106200038d575b90601f859493920160051c01905b8181106200037d5750620001ef565b600081558493506001016200036e565b909150819062000360565b634e487b7160e01b600052602260045260246000fd5b91607f1691620001d9565b634e487b7160e01b600052604160045260246000fd5b0151905038806200019e565b6008600090815293506000805160206200459883398151915291905b601f19841685106200043d576001945083601f1981161062000423575b505050811b01600855620001b4565b015160001960f88460031b161c1916905538808062000414565b81810151835560209485019460019093019290910190620003f7565b600860005290915060008051602062004598833981519152601f840160051c810160208510620004b2575b90849392915b601f830160051c82018110620004a257505062000185565b600081558594506001016200048a565b508062000484565b91607f16916200016f565b8e51631e4fbdf760e01b815260006004820152602490fd5b600080fd5b6040519190601f01601f191682016001600160401b03811183821017620003b957604052565b51906001600160a01b0382168203620004dd57565b919080601f84011215620004dd5782516001600160401b038111620003b95760209062000553601f8201601f19168301620004e2565b92818452828287010111620004dd5760005b8181106200057b57508260009394955001015290565b85810183015184820184015282016200056556fe60406080815260048036101562000050575b5036156200001e57600080fd5b513381523460208201527f88a5966d370b9919b20f3e2c13ff65706f196a4e32cc2c12bf57088f8852587490604090a1005b600090813560e01c90816303c15957146200205b57816305b0e4ae14620020195781630635bbac1462001ff85781630ec6d58a1462001fb65781631ac3ddeb1462001e065781631cdd8e871462001de55781631daa4e7c1462001dc4578163217c4b2d1462001c8b578163241291381462001c6a5781632eb4a7ab1462001c495781632fb0cb3c1462001c1e57816331ed6a5a1462001bfd5781633ad0e4f11462001bdc5781633f4ba83a1462001b4a57816340d1d2551462001b29578163468fa45b1462001b085781634e4c06471462001ae75781634e71d92d14620018ae5781635c975abb14620018875781635f64b55b146200185c5781635ff56f6e146200183b5781636b773a3a14620013965781636c02a93114620012dc5781636caed03a14620012bb57816370a6dea8146200129a578163715018a6146200123c5781637b61c320146200114f5781637eb96b7b14620011135781637f5a434f14620010d15781638456cb59146200104f578163890120e514620010265781638da5cb5b1462000ffc5781638f10369a1462000fdb5781639456fbcc1462000e49578163949105781462000e2857816394aac4bb1462000e075781639668ceb81462000de65781639d4bc4f31462000dbd5781639d67ac371462000c26578163a5b2a18f1462000842578163a7e3f6531462000821578163b480a1d51462000644578163b77cf9c61462000609578163bcc3f15714620005cd578163bf38345014620005ac578163d59e49f81462000477578163d640f13e1462000456578163d93244eb1462000435578163dd54291b1462000414578163ed1dcc6114620003ee578163f2fde38b146200035157508063f44fa86e1462000330578063f6229b2b146200030f5763f8b7063703620000115790346200030b57816003193601126200030b57600a5490516001600160a01b039091168152602090f35b5080fd5b5090346200030b57816003193601126200030b576020906005549051908152f35b5090346200030b57816003193601126200030b57602090601b549051908152f35b83915034620003ea576020366003190112620003ea576200037162002191565b906200037c62002269565b6001600160a01b03918216928315620003d4575050600054826bffffffffffffffffffffffff60a01b821617600055167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a380f35b51631e4fbdf760e01b8152908101849052602490fd5b8280fd5b8284346200030b57816003193601126200030b5760209060ff6025541690519015158152f35b8284346200030b57816003193601126200030b57602090600c549051908152f35b8284346200030b57816003193601126200030b57602090601d549051908152f35b8284346200030b57816003193601126200030b576020906007549051908152f35b83915034620003ea576020366003190112620003ea576200049762002191565b903384526023602052620004b6600160ff85872054161515146200243f565b620004c660195442101562002345565b47918215620005695784808085819460018060a01b03165af1620004e9620023ae565b50156200051357509060008051602062003fb383398151915291815190600082526020820152a180f35b608490602084519162461bcd60e51b8352820152602a60248201527f576974686472617761626c653a204e617469766520546f6b656e207472616e7360448201526919995c8819985a5b195960b21b6064820152fd5b835162461bcd60e51b8152602081840152601b60248201527f4e6f206e617469766520746f6b656e20746f20776974686472617700000000006044820152606490fd5b8284346200030b57816003193601126200030b576020906006549051908152f35b8284346200030b5760203660031901126200030b5760209181906001600160a01b03620005f962002191565b168152601f845220549051908152f35b8284346200030b5760203660031901126200030b5760209181906001600160a01b036200063562002191565b16815283805220549051908152f35b83915082600319360112620003ea576200065d620022db565b6200066d60165442101562002296565b6200067d60175442111562002296565b6002546001600160a01b0316620007df5762000698620022db565b620006a262002321565b338352601f602052620006b93483852054620022fd565b600754106200079257620006d034600654620022fd565b8154106200075b57338352601f602052818320620006f0348254620022fd565b90556200070034600654620022fd565b600655601b549060018201809211620007485750601b55513481527fe1fffcc4923d04b559f4d29a8bfc6cda04eb5b0d3c460751c2402c5c5cc9109c60203392a26001805580f35b634e487b7160e01b845260119052602483fd5b6020606492519162461bcd60e51b83528201526012602482015271125113c8185b5bdd5b9d081a5cc8199d5b1b60721b6044820152fd5b6020608492519162461bcd60e51b8352820152602260248201527f4578636565647320746865206d617820616d6f756e7420706572206164647265604482015261737360f01b6064820152fd5b6020606492519162461bcd60e51b8352820152601f60248201527f43616e6e6f74206465706f736974207769746820657263323020746f6b656e006044820152fd5b8284346200030b57816003193601126200030b576020906019549051908152f35b83833462000c23578160031936011262000c235782359267ffffffffffffffff92838511620003ea5736602386011215620003ea57848201359484861162000c1f5760249560059181831b9288848301019036821162000c1b578935620008a8620022db565b620008b262002321565b60ff60255460101c161562000bd957620008cf81601d54620022fd565b6010541062000b9757338952602094601e865260ff888b20541662000b555787513387820190815260208101849052906200091881604084015b03601f198101835282620021e5565b51902093885194878601908152878652898601809d87821091111762000b4157958c92620009568f98858d5288519020948a601c549c0190620021e5565b8d5260609601878688015b83831062000b3057505050509589965b8b51881015620009ca5787841b85018601519081811015620009bc578b528652878a205b966000198114620009aa576001019662000971565b634e487b7160e01b8b5260118a528c8bfd5b908b528652878a2062000995565b888a8e8d95948a940362000b0057600b54835163a9059cbb60e01b815233848201908152602081018890529091869183916001600160a01b03169082908b90829060400103925af190811562000af657879162000ac2575b501562000a82575050907fa8ed4395998413199a74f02f5afa601e64b305c8d81930efde25adb44555a8ca9162000a5c84601d54620022fd565b601d55338552601e8252808520600160ff19825416179055519283523392a26001805580f35b606493601d9293519362461bcd60e51b85528401528201527f546f6b656e41697264726f703a205472616e73666572206661696c65640000006044820152fd5b62000ae79150853d871162000aee575b62000ade8183620021e5565b81019062002524565b8762000a22565b503d62000ad2565b84513d89823e3d90fd5b606493600d9293519362461bcd60e51b85528401528201526c24b73b30b634b210383937b7b360991b6044820152fd5b823581529181019189910162000961565b8d60418c634e487b7160e01b600052526000fd5b875162461bcd60e51b8152808a01879052601d818e01527f4d65726b6c6520436c61696d3a20416c726561647920636c61696d65640000006044820152606490fd5b865162461bcd60e51b81526020818a0152601c818d01527f4d65726b6c6520436c61696d3a20496e76616c696420616d6f756e74000000006044820152606490fd5b865162461bcd60e51b81526020818a01819052818d01527f4d65726b6c6520526f6f7420686173206e6f74206265656e20757064617465646044820152606490fd5b8780fd5b8380fd5b80fd5b83915034620003ea5760208060031936011262000c1f5762000c4762002191565b903385526023815262000c65600160ff86882054161515146200243f565b62000c7860ff60255460081c16620024d7565b62000c8960065460155490620023a0565b92831562000d875762000cf89082906001600160a01b0362000cbf898080808b8b87165af162000cb8620023ae565b50620023f2565b600b54168589601254938a519687958694859363a9059cbb60e01b8552840160209093929193604081019460018060a01b031681520152565b03925af1801562000d7d57917f8291c2165fb22f13d0ed7fc85f1f2ac23027102c70d95f9459c42a59e241eaa5959162000d549362000d5a575b5050516001600160a01b03909216825260208201929092529081906040820190565b0390a180f35b8162000d7492903d1062000aee5762000ade8183620021e5565b50868062000d32565b85513d88823e3d90fd5b60649185519162461bcd60e51b835282015260126024820152714e6f204d4e5420746f20776974686472617760701b6044820152fd5b8284346200030b57816003193601126200030b5760209060ff60255460101c1690519015158152f35b8284346200030b57816003193601126200030b576020906024549051908152f35b8284346200030b57816003193601126200030b576020906011549051908152f35b8284346200030b57816003193601126200030b576020906013549051908152f35b9050346200030b57826003193601126200030b5762000e6762002191565b602435916001600160a01b03808416840362000fd6573385526020906023825262000e9d600160ff89892054161515146200243f565b62000ead60195442101562002345565b8316908651946370a0823160e01b865230848701528186602481865afa95861562000fcc57908791829762000f8f575b50885163a9059cbb60e01b8482019081526001600160a01b0390921660248201526044810188905262000f14816064810162000909565b519082855af11562000f855784513d62000f7b5750803b155b62000f6557505092516001600160a01b03909316835260208301529060008051602062003fb383398151915290806040810162000d54565b8551635274afe760e01b81529182015260249150fd5b6001141562000f2d565b85513d86823e3d90fd5b83809298508193503d831162000fc4575b62000fac8183620021e5565b8101031262000fc057869051953862000edd565b8680fd5b503d62000fa0565b88513d89823e3d90fd5b600080fd5b8284346200030b57816003193601126200030b57602090601a549051908152f35b8284346200030b57816003193601126200030b57905490516001600160a01b039091168152602090f35b8284346200030b57816003193601126200030b5760209060ff60255460081c1690519015158152f35b8284346200030b57816003193601126200030b57602080913384526023825262001084600160ff83872054161515146200243f565b6200108e620022db565b835460ff60a01b1916600160a01b17845580513381527f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258938491a151338152a180f35b8284346200030b5760203660031901126200030b5760209160ff9082906001600160a01b036200110062002191565b1681526022855220541690519015158152f35b8284346200030b5760203660031901126200030b5760209181906001600160a01b036200113f62002191565b1681526021845220549051908152f35b50503462000c23578060031936011262000c23575080516000916009546200117781620021a8565b808452602091600190818116908115620012195750600114620011b9575b505050620011aa82620011b5940383620021e5565b51918291826200221e565b0390f35b600960009081529295507f6e1540171b6c0c960b71a7020d9f60077f6af931a8bbf590da0223dacf75c7af5b828410620012055750505082620011b594620011aa928201019462001195565b8054868501880152928601928101620011e5565b60ff1916868501525050151560051b8301019250620011aa82620011b562001195565b823462000c23578060031936011262000c23576200125962002269565b600080546001600160a01b0319811682556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b8284346200030b57816003193601126200030b576020906016549051908152f35b83915034620003ea5782600319360112620003ea5760209250549051908152f35b50503462000c23578060031936011262000c23575080516000916008546200130481620021a8565b8084526020916001908181169081156200121957506001146200133657505050620011aa82620011b5940383620021e5565b600860009081529295507ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee35b828410620013825750505082620011b594620011aa928201019462001195565b805486850188015292860192810162001362565b8284346200030b57816003193601126200030b5733825260209160238352600193620013cc8560ff85852054161515146200243f565b60175493620013de8542101562002345565b600c54620017f9576006546005548110620017b657620014066200142e9160035490620024a2565b9586600c55620014276200141d600d5489620024a2565b91601854620023a0565b90620024b6565b601a55835190611a749586830167ffffffffffffffff9784821089831117620017a3576200253f8539608081528592600854996200146c8b620021a8565b9a8b608085015260a09082811690816000146200178457506001146200172d575b5085969798999a5082850382840152889460095491620014ad83620021a8565b808352928181169081156200170e5750600114620016b0575b505060128a840152505060600152039083f08015620016a657602580546301000000600160b81b031916601892831b6301000000600160b81b03161790819055600a80546001600160a01b03199081169290931c6001600160a01b03169182179055600c5485518281526020810182905291969290918791907ff1ed35d2dc9ff575d72c135a298439ab33ccca01a400625539dbbd42099fd03f9080604081010390a1600b541617600b55853b1562000c1f5784516340c10f1960e01b81523084820190815260208101929092529495939493859185919082908490829060400103925af1801562000f85576200167d575b600c54855130815260208101829052859162001668917f36bf5aa3964be01dbd95a0154a8930793fe68353bdc580871ffb2c911366bbc790604090a16103e862001653816200160a600d5485620024a2565b049283600e55826200161f600f5483620024a2565b04601055826200163260115483620024a2565b0460125582620016466013548093620024a2565b04601455600654620024a2565b046015556200142760185460175490620023a0565b601a5561010061ff0019602554161760255580f35b82116200169357508252620016688380620015b8565b634e487b7160e01b835260419052602482fd5b83513d84823e3d90fd5b929395509060098a527f6e1540171b6c0c960b71a7020d9f60077f6af931a8bbf590da0223dacf75c7af928a935b828510620016f75750505001019160608a8080620014c6565b8054858501870152899850938501938101620016de565b60ff191685840152505090151560051b0101925060608a8080620014c6565b60088952909450877ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee35b8c8210620017705750999a508a9983010193856200148d565b805485830184015290830190860162001757565b60ff19168583015250999a8b9a90151560051b8401019450856200148d565b634e487b7160e01b875260418652602487fd5b845162461bcd60e51b8152808401839052601860248201527f49444f20616d6f756e74206973206e6f7420656e6f75676800000000000000006044820152606490fd5b835162461bcd60e51b815291820152601760248201527f546f6b656e204220686173206265656e206d696e746564000000000000000000604482015260649150fd5b8284346200030b57816003193601126200030b576020906017549051908152f35b8284346200030b57816003193601126200030b57600b5490516001600160a01b039091168152602090f35b8284346200030b57816003193601126200030b5760ff6020925460a01c1690519015158152f35b83915034620003ea5782600319360112620003ea57620018cd620022db565b620018d762002321565b601754620018e88142101562002345565b601954421162001a92576200190560ff60255460081c16620024d7565b429060185480831162001a86575b506200195e6200194c620019426200196893338952602095868052888a205491821562001a7d575b50620023a0565b601a5490620024a2565b338752601f84528587205490620024a2565b60065490620024b6565b91821562001a4657600b54845163a9059cbb60e01b81523392810192835260208301859052918391839182900360400190829089906001600160a01b03165af1801562001a3c579160219162001a10959362001a1a575b5082518481527fd8138f8a3f377c5259ca548e70e4c2de94f129f5a11036a15b69513cba2b426a823392a2338652808052428387205552832062001a05828254620022fd565b9055602454620022fd565b6024556001805580f35b62001a3490823d841162000aee5762000ade8183620021e5565b5086620019bf565b84513d87823e3d90fd5b60649184519162461bcd60e51b83528201526013602482015272139bc818db185a5b58589b1948185b5bdd5b9d606a1b6044820152fd5b91508a6200193b565b91506200195e62001913565b506020608492519162461bcd60e51b8352820152602960248201527f436c61696d2074696d65206d757374206265206265666f726520636c61696d206044820152686f7665722074696d6560b81b6064820152fd5b8284346200030b57816003193601126200030b576020906015549051908152f35b8284346200030b57816003193601126200030b57602090600f549051908152f35b8284346200030b57816003193601126200030b576020906018549051908152f35b83915034620003ea5782600319360112620003ea57338352602360205262001b7d600160ff84862054161515146200243f565b82549060ff8260a01c161562001bce575060ff60a01b1916825580513381527f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa9160209183908390a151338152a180f35b8251638dfc202b60e01b8152fd5b8284346200030b57816003193601126200030b576020906010549051908152f35b8284346200030b57816003193601126200030b576020906003549051908152f35b8284346200030b57816003193601126200030b5760025490516001600160a01b039091168152602090f35b8284346200030b57816003193601126200030b57602090601c549051908152f35b8284346200030b57816003193601126200030b576020906014549051908152f35b83915034620003ea5782600319360112620003ea5762001caa620022db565b62001cb462002321565b62001cc460175442101562002345565b600654600554111562001d8c57338352601f6020528183205490811562001d5557509060008051602062003fb383398151915291338452601f602052838281205562001d1381600654620023a0565b60065562001d2c8480808085335af162000cb8620023ae565b3384526022602052818420600160ff198254161790558151908482526020820152a16001805580f35b606490602084519162461bcd60e51b83528201526011602482015270139bc819195c1bdcda5d08185b5bdd5b9d607a1b6044820152fd5b6020606492519162461bcd60e51b835282015260136024820152721a591bc81b9bdd08199d5b1b0b19985a5b1959606a1b6044820152fd5b8284346200030b57816003193601126200030b57602090600d549051908152f35b8284346200030b57816003193601126200030b57602090600e549051908152f35b8284346200030b57602080600319360112620003ea5762001e2662002191565b3384526023825262001e43600160ff85872054161515146200243f565b60255460ff811662001f7c5760ff62001e709162001e6660175442101562002345565b60081c16620024d7565b60145494851562001f3957600b54845163a9059cbb60e01b81526001600160a01b03848116938201938452602084019890985295968796909290918591839185169082908a90829060400103925af1801562000d7d57958062001efa948194829460008051602062003fb38339815191529a62001f17575b5060155491165af162000cb8620023ae565b601554825191858352820152a1600160ff19602554161760255580f35b62001f3190893d8b1162000aee5762000ade8183620021e5565b508b62001ee8565b835162461bcd60e51b8152908101839052601760248201527f66656520697320302c63616e27742077697468647261770000000000000000006044820152606490fd5b835162461bcd60e51b8152808701849052601460248201527313dddb995c881a185cc81dda5d1a191c985dd95960621b6044820152606490fd5b8284346200030b5760203660031901126200030b5760209160ff9082906001600160a01b0362001fe562002191565b1681526023855220541690519015158152f35b8284346200030b57816003193601126200030b576020906012549051908152f35b8284346200030b5760203660031901126200030b5760209160ff9082906001600160a01b036200204862002191565b168152601e855220541690519015158152f35b90508234620003ea5780600319360112620003ea57813591338452602360205262002091600160ff84872054161515146200243f565b60255490620020a660ff8360081c16620024d7565b60105460243503620021425760ff8260101c16620020ff5750601c83905562ff000019166201000017602555519081527f90004c04698bc3322499a575ed3752dd4abf33e0a7294c06a787a0fe01bea94190602090a180f35b606490602084519162461bcd60e51b8352820152601c60248201527f4d65726b6c6520526f6f7420686173206265656e2075706461746564000000006044820152fd5b608490602084519162461bcd60e51b8352820152602360248201527f4d65726b6c6520726f6f7420416d6f756e74203a20496e76616c696420616d6f6044820152621d5b9d60ea1b6064820152fd5b600435906001600160a01b038216820362000fd657565b90600182811c92168015620021da575b6020831014620021c457565b634e487b7160e01b600052602260045260246000fd5b91607f1691620021b8565b90601f8019910116810190811067ffffffffffffffff8211176200220857604052565b634e487b7160e01b600052604160045260246000fd5b6020808252825181830181905290939260005b8281106200225457505060409293506000838284010152601f8019910116010190565b81810186015184820160400152850162002231565b6000546001600160a01b031633036200227e57565b60405163118cdaa760e01b8152336004820152602490fd5b156200229e57565b60405162461bcd60e51b8152602060048201526015602482015274125113c81d1a5b59481a5cc81b9bdd081d985b1a59605a1b6044820152606490fd5b60ff60005460a01c16620022eb57565b60405163d93c066560e01b8152600490fd5b919082018092116200230b57565b634e487b7160e01b600052601160045260246000fd5b60026001541462002333576002600155565b604051633ee5aeb560e01b8152600490fd5b156200234d57565b60405162461bcd60e51b815260206004820152602560248201527f436c61696d2074696d65206d7573742062652061667465722069646f20656e646044820152642074696d6560d81b6064820152608490fd5b919082039182116200230b57565b3d15620023ed573d9067ffffffffffffffff8211620022085760405191620023e1601f8201601f191660200184620021e5565b82523d6000602084013e565b606090565b15620023fa57565b60405162461bcd60e51b815260206004820152601c60248201527f4e617469766520546f6b656e205472616e73666572204661696c6564000000006044820152606490fd5b156200244757565b60405162461bcd60e51b815260206004820152602d60248201527f546f6b656e204469737472696275746f723a3a6f6e6c7953656e64557365723a60448201526c102737ba1029b2b7322ab9b2b960991b6064820152608490fd5b818102929181159184041417156200230b57565b8115620024c1570490565b634e487b7160e01b600052601260045260246000fd5b15620024df57565b60405162461bcd60e51b815260206004820152601b60248201527f546f6b656e204220686173206e6f74206265656e206d696e74656400000000006044820152606490fd5b9081602091031262000fd65751801515810362000fd6579056fe6101a0604081815234620004d95762001a748038038091620000228286620004de565b8439820191608081840312620004d95780516001600160401b039390848111620004d957816200005491840162000527565b6020918284015190868211620004d9576200007191850162000527565b91848401519360ff85168503620004d957606001519285519686880188811082821117620003e457875260019283895280890193603160f81b85528551838111620003e45760038054918383811c93168015620004ce575b85841014620004b857601f928381116200046d575b5080858482116001146200040657600091620003fa575b5060001982841b1c191690841b1781555b855191858311620003e45760049687548581811c91168015620003d9575b87821014620003c45782811162000379575b50859184116001146200030e5793839491849260009562000302575b50501b92600019911b1c19161783555b6200016d8562000582565b936101209485526200017f8a62000727565b95610140968752828151910120998a60e0525190209861010099808b524660a0528951928301917f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f83528a84015260608301524660808301523060a083015260a0825260c082019282841090841117620002ed57828952815190206080523060c0528515620002d65750506101609384523315620002bf575060088054336001600160a01b0319821681179092559551956001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a36101809384526111f595866200087f873960805186610f13015260a05186610fdf015260c05186610edd015260e05186610f6201525185610f88015251846104a5015251836104cf01525182818161074e01526107f9015251816108360152f35b6024906000875191631e4fbdf760e01b8352820152fd5b63392e1e2760e01b8252600060c490910152602490fd5b604184634e487b7160e01b6000525260246000fd5b01519350388062000152565b9190601f198416928860005284876000209460005b898983831062000361575050501062000346575b50505050811b01835562000162565b01519060f884600019921b161c191690553880808062000337565b86860151895590970196948501948893500162000323565b88600052866000208380870160051c820192898810620003ba575b0160051c019086905b828110620003ad57505062000136565b600081550186906200039d565b9250819262000394565b602289634e487b7160e01b6000525260246000fd5b90607f169062000124565b634e487b7160e01b600052604160045260246000fd5b905089015138620000f5565b60008481528781208794509190601f19841690898e5b838310620004555750505083116200043c575b5050811b01815562000106565b8b015160001983861b60f8161c1916905538806200042f565b84015185558996909401939283019201898e6200041c565b82600052856000208480840160051c820192888510620004ae575b0160051c019085905b828110620004a1575050620000de565b6000815501859062000491565b9250819262000488565b634e487b7160e01b600052602260045260246000fd5b92607f1692620000c9565b600080fd5b601f909101601f19168101906001600160401b03821190821017620003e457604052565b60005b838110620005165750506000910152565b818101518382015260200162000505565b81601f82011215620004d95780516001600160401b038111620003e457604051926200055e601f8301601f191660200185620004de565b81845260208284010111620004d9576200057f916020808501910162000502565b90565b8051602091908281101562000602575090601f825111620005c05780825192015190808310620005b157501790565b82600019910360031b1b161790565b604490620005f49260405193849263305a27a960e01b84528060048501528251928391826024870152868601910162000502565b601f01601f19168101030190fd5b6001600160401b038111620003e4576005928354926001938481811c911680156200071c575b83821014620004b857601f8111620006e5575b5081601f84116001146200067b57509282939183926000946200066f575b50501b916000199060031b1c191617905560ff90565b01519250388062000659565b919083601f1981168760005284600020946000905b88838310620006ca5750505010620006b0575b505050811b01905560ff90565b015160001960f88460031b161c19169055388080620006a3565b85870151885590960195948501948793509081019062000690565b8560005284601f846000209201871c820191601f8601881c015b8281106200070f5750506200063b565b60008155018590620006ff565b90607f169062000628565b805160209081811015620007545750601f825111620005c05780825192015190808310620005b157501790565b906001600160401b038211620003e457600654926001938481811c9116801562000873575b83821014620004b857601f811162000839575b5081601f8411600114620007cd5750928293918392600094620007c1575b50501b916000199060031b1c19161760065560ff90565b015192503880620007aa565b919083601f198116600660005284600020946000905b888383106200081e575050501062000804575b505050811b0160065560ff90565b015160001960f88460031b161c19169055388080620007f6565b858701518855909601959485019487935090810190620007e3565b600660005284601f84600020920160051c820191601f860160051c015b828110620008665750506200078c565b6000815501859062000856565b90607f16906200077956fe6080604081815260048036101561001557600080fd5b600092833560e01c90816306fdde03146108e057508063095ea7b3146108b657806318160ddd1461089757806323b872dd1461085a578063313ce5671461081c578063355274ea146107e15780633644e515146107bd57806340c10f19146106c857806342966c68146106aa57806370a0823114610673578063715018a61461061657806379cc6790146105e35780637ecebe00146105ab57806384b0196e1461048e5780638da5cb5b1461046557806395d89b4114610377578063a9059cbb14610346578063d505accf146101de578063dd62ed3e146101915763f2fde38b146100ff57600080fd5b3461018d57602036600319011261018d576101186109f7565b90610121610a28565b6001600160a01b03918216928315610177575050600854826bffffffffffffffffffffffff60a01b821617600855167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08380a380f35b51631e4fbdf760e01b8152908101849052602490fd5b8280fd5b5050346101da57806003193601126101da57806020926101af6109f7565b6101b7610a12565b6001600160a01b0391821683526001865283832091168252845220549051908152f35b5080fd5b508290346101da5760e03660031901126101da576101fa6109f7565b610202610a12565b906044359260643560843560ff811681036103425781421161032b5760018060a01b0390818516928389526007602052898920908154916001830190558a519060208201927f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98452868d840152858a1660608401528a608084015260a083015260c082015260c0815260e0810181811067ffffffffffffffff821117610318578b525190206102e6916102dd916102b7610eda565b908c519161190160f01b83526002830152602282015260c43591604260a4359220610dc5565b90929192610e55565b168181036102fd57866102fa878787610bc0565b80f35b87516325c0072360e11b815292830152602482015260449150fd5b634e487b7160e01b8b526041875260248bfd5b875163313c898160e11b8152808401839052602490fd5b8680fd5b5050346101da57806003193601126101da576020906103706103666109f7565b6024359033610ae2565b5160018152f35b50903461018d578260031936011261018d57805183819490845461039a81610a54565b9182855260209660019288848216918260001461043b5750506001146103e0575b85886103dc896103cd848a0385610ac0565b519282849384528301906109b7565b0390f35b815286935091907f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b5b82841061042357505050820101816103cd6103dc386103bb565b8054848a018601528895508794909301928101610409565b60ff19168882015294151560051b870190940194508593506103cd92506103dc91503890506103bb565b5050346101da57816003193601126101da5760085490516001600160a01b039091168152602090f35b50903461018d578260031936011261018d576104c97f0000000000000000000000000000000000000000000000000000000000000000611005565b926104f37f0000000000000000000000000000000000000000000000000000000000000000611102565b908251926020928385019585871067ffffffffffffffff8811176105985750928061054e838896610541998b9996528686528151998a99600f60f81b8b5260e0868c015260e08b01906109b7565b91898303908a01526109b7565b924660608801523060808801528460a088015286840360c088015251928381520193925b82811061058157505050500390f35b835185528695509381019392810192600101610572565b634e487b7160e01b845260419052602483fd5b5050346101da5760203660031901126101da5760209181906001600160a01b036105d36109f7565b1681526007845220549051908152f35b5050346101da57366003190112610613576102fa6105ff6109f7565b6024359061060e823383610c53565b610d26565b80fd5b833461061357806003193601126106135761062f610a28565b600880546001600160a01b0319811690915581906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b5050346101da5760203660031901126101da5760209181906001600160a01b0361069b6109f7565b16815280845220549051908152f35b8382346101da5760203660031901126101da576102fa903533610d26565b50903461018d578060031936011261018d576106e26109f7565b602435906106ee610a28565b6001600160a01b03169081156107a65760025481810180911161079357602086927fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef926002558484528382528584208181540190558551908152a36002547f000000000000000000000000000000000000000000000000000000000000000091828211610779578480f35b5163279e7e1560e21b815292830152602482015260449150fd5b634e487b7160e01b865260118552602486fd5b825163ec442f0560e01b8152808501869052602490fd5b5050346101da57816003193601126101da576020906107da610eda565b9051908152f35b5050346101da57816003193601126101da57602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b5050346101da57816003193601126101da576020905160ff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b5050346101da5760603660031901126101da5760209061037061087b6109f7565b610883610a12565b60443591610892833383610c53565b610ae2565b5050346101da57816003193601126101da576020906002549051908152f35b5050346101da57806003193601126101da576020906103706108d66109f7565b6024359033610bc0565b8484346101da57816003193601126101da57828260035461090081610a54565b90818452602095600191878382169182600014610990575050600114610934575b5050506103dc92916103cd910385610ac0565b9190869350600383527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5b82841061097857505050820101816103cd6103dc610921565b8054848a01860152889550879490930192810161095f565b60ff19168782015293151560051b860190930193508492506103cd91506103dc9050610921565b919082519283825260005b8481106109e3575050826000602080949584010152601f8019910116010190565b6020818301810151848301820152016109c2565b600435906001600160a01b0382168203610a0d57565b600080fd5b602435906001600160a01b0382168203610a0d57565b6008546001600160a01b03163303610a3c57565b60405163118cdaa760e01b8152336004820152602490fd5b90600182811c92168015610a84575b6020831014610a6e57565b634e487b7160e01b600052602260045260246000fd5b91607f1691610a63565b6040810190811067ffffffffffffffff821117610aaa57604052565b634e487b7160e01b600052604160045260246000fd5b90601f8019910116810190811067ffffffffffffffff821117610aaa57604052565b916001600160a01b03808416928315610ba75716928315610b8e5760009083825281602052604082205490838210610b5c575091604082827fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef958760209652828652038282205586815220818154019055604051908152a3565b60405163391434e360e21b81526001600160a01b03919091166004820152602481019190915260448101839052606490fd5b60405163ec442f0560e01b815260006004820152602490fd5b604051634b637e8f60e11b815260006004820152602490fd5b6001600160a01b03908116918215610c3a5716918215610c215760207f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925918360005260018252604060002085600052825280604060002055604051908152a3565b604051634a1406b160e11b815260006004820152602490fd5b60405163e602df0560e01b815260006004820152602490fd5b9160018060a01b038093169160009383855260016020526040938486209183169182875260205284862054926000198403610c92575b50505050505050565b848410610cf657508015610cde578115610cc657855260016020528385209085526020520391205538808080808080610c89565b8451634a1406b160e11b815260048101879052602490fd5b845163e602df0560e01b815260048101879052602490fd5b8551637dc7a0d960e11b81526001600160a01b039190911660048201526024810184905260448101859052606490fd5b906001600160a01b038216908115610ba75760009282845283602052604084205490828210610d935750817fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef926020928587528684520360408620558060025403600255604051908152a3565b60405163391434e360e21b81526001600160a01b03919091166004820152602481019190915260448101829052606490fd5b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411610e4957926020929160ff608095604051948552168484015260408301526060820152600092839182805260015afa15610e3d5780516001600160a01b03811615610e3457918190565b50809160019190565b604051903d90823e3d90fd5b50505060009160039190565b6004811015610ec45780610e67575050565b60018103610e815760405163f645eedf60e01b8152600490fd5b60028103610ea25760405163fce698f760e01b815260048101839052602490fd5b600314610eac5750565b602490604051906335e2f38360e21b82526004820152fd5b634e487b7160e01b600052602160045260246000fd5b307f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03161480610fdc575b15610f35577f000000000000000000000000000000000000000000000000000000000000000090565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260a0815260c0810181811067ffffffffffffffff821117610aaa5760405251902090565b507f00000000000000000000000000000000000000000000000000000000000000004614610f0c565b60ff81146110435760ff811690601f8211611031576040519161102783610a8e565b8252602082015290565b604051632cd44ac360e21b8152600490fd5b5060405160055481600061105683610a54565b8083526020936001908181169081156110e25750600114611083575b505061108092500382610ac0565b90565b9093915060056000527f036b6384b5eca791c62761152d0c79bb0604c104a5fb6f4eb0703f3154bb3db0936000915b8183106110ca57505061108093508201013880611072565b855487840185015294850194869450918301916110b2565b91505061108094925060ff191682840152151560051b8201013880611072565b60ff81146111245760ff811690601f8211611031576040519161102783610a8e565b5060405160065481600061113783610a54565b8083526020936001908181169081156110e2575060011461116057505061108092500382610ac0565b9093915060066000527ff652222313e28459528d920b65115c16c04f3efc82aaedc97be59f3f377c0d3f936000915b8183106111a757505061108093508201013880611072565b8554878401850152948501948694509183019161118f56fea2646970667358221220b64db582d6af9f75bc23d8de10894aeecf95c312858f780c5a47c1dcf10cf27b64736f6c63430008150033884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a9424364a264697066735822122007fa52f6772befb284810d070532b387409068aa195693444f4fcca0298cd32f64736f6c63430008150033f3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee36e1540171b6c0c960b71a7020d9f60077f6af931a8bbf590da0223dacf75c7af00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003e80000000000000000000000000000000000000000000000a968163f0a57b40000000000000000000000000000000000000000000000000010f0cf064dd5920000000000000000000000000000000000000000000000000000ad78ebc5ac620000000000000000000000000000000000000000000000000000000000000000001c00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000006731fb190000000000000000000000000000000000000000000000000000000067334c5d00000000000000000000000000000000000000000000000000000000000001e0000000000000000000000000000000000000000000000000000000000000001400000000000000000000000000000000000000000000000000000000000001f400000000000000000000000000000000000000000000000000000000000000000000000000000000000000004b08a1e913174e2522797793e2ee0c7eaab817b30000000000000000000000000000000000000000000000000000000000000003537573000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000035375730000000000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x60406080815260048036101562000050575b5036156200001e57600080fd5b513381523460208201527f88a5966d370b9919b20f3e2c13ff65706f196a4e32cc2c12bf57088f8852587490604090a1005b600090813560e01c90816303c15957146200205b57816305b0e4ae14620020195781630635bbac1462001ff85781630ec6d58a1462001fb65781631ac3ddeb1462001e065781631cdd8e871462001de55781631daa4e7c1462001dc4578163217c4b2d1462001c8b578163241291381462001c6a5781632eb4a7ab1462001c495781632fb0cb3c1462001c1e57816331ed6a5a1462001bfd5781633ad0e4f11462001bdc5781633f4ba83a1462001b4a57816340d1d2551462001b29578163468fa45b1462001b085781634e4c06471462001ae75781634e71d92d14620018ae5781635c975abb14620018875781635f64b55b146200185c5781635ff56f6e146200183b5781636b773a3a14620013965781636c02a93114620012dc5781636caed03a14620012bb57816370a6dea8146200129a578163715018a6146200123c5781637b61c320146200114f5781637eb96b7b14620011135781637f5a434f14620010d15781638456cb59146200104f578163890120e514620010265781638da5cb5b1462000ffc5781638f10369a1462000fdb5781639456fbcc1462000e49578163949105781462000e2857816394aac4bb1462000e075781639668ceb81462000de65781639d4bc4f31462000dbd5781639d67ac371462000c26578163a5b2a18f1462000842578163a7e3f6531462000821578163b480a1d51462000644578163b77cf9c61462000609578163bcc3f15714620005cd578163bf38345014620005ac578163d59e49f81462000477578163d640f13e1462000456578163d93244eb1462000435578163dd54291b1462000414578163ed1dcc6114620003ee578163f2fde38b146200035157508063f44fa86e1462000330578063f6229b2b146200030f5763f8b7063703620000115790346200030b57816003193601126200030b57600a5490516001600160a01b039091168152602090f35b5080fd5b5090346200030b57816003193601126200030b576020906005549051908152f35b5090346200030b57816003193601126200030b57602090601b549051908152f35b83915034620003ea576020366003190112620003ea576200037162002191565b906200037c62002269565b6001600160a01b03918216928315620003d4575050600054826bffffffffffffffffffffffff60a01b821617600055167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a380f35b51631e4fbdf760e01b8152908101849052602490fd5b8280fd5b8284346200030b57816003193601126200030b5760209060ff6025541690519015158152f35b8284346200030b57816003193601126200030b57602090600c549051908152f35b8284346200030b57816003193601126200030b57602090601d549051908152f35b8284346200030b57816003193601126200030b576020906007549051908152f35b83915034620003ea576020366003190112620003ea576200049762002191565b903384526023602052620004b6600160ff85872054161515146200243f565b620004c660195442101562002345565b47918215620005695784808085819460018060a01b03165af1620004e9620023ae565b50156200051357509060008051602062003fb383398151915291815190600082526020820152a180f35b608490602084519162461bcd60e51b8352820152602a60248201527f576974686472617761626c653a204e617469766520546f6b656e207472616e7360448201526919995c8819985a5b195960b21b6064820152fd5b835162461bcd60e51b8152602081840152601b60248201527f4e6f206e617469766520746f6b656e20746f20776974686472617700000000006044820152606490fd5b8284346200030b57816003193601126200030b576020906006549051908152f35b8284346200030b5760203660031901126200030b5760209181906001600160a01b03620005f962002191565b168152601f845220549051908152f35b8284346200030b5760203660031901126200030b5760209181906001600160a01b036200063562002191565b16815283805220549051908152f35b83915082600319360112620003ea576200065d620022db565b6200066d60165442101562002296565b6200067d60175442111562002296565b6002546001600160a01b0316620007df5762000698620022db565b620006a262002321565b338352601f602052620006b93483852054620022fd565b600754106200079257620006d034600654620022fd565b8154106200075b57338352601f602052818320620006f0348254620022fd565b90556200070034600654620022fd565b600655601b549060018201809211620007485750601b55513481527fe1fffcc4923d04b559f4d29a8bfc6cda04eb5b0d3c460751c2402c5c5cc9109c60203392a26001805580f35b634e487b7160e01b845260119052602483fd5b6020606492519162461bcd60e51b83528201526012602482015271125113c8185b5bdd5b9d081a5cc8199d5b1b60721b6044820152fd5b6020608492519162461bcd60e51b8352820152602260248201527f4578636565647320746865206d617820616d6f756e7420706572206164647265604482015261737360f01b6064820152fd5b6020606492519162461bcd60e51b8352820152601f60248201527f43616e6e6f74206465706f736974207769746820657263323020746f6b656e006044820152fd5b8284346200030b57816003193601126200030b576020906019549051908152f35b83833462000c23578160031936011262000c235782359267ffffffffffffffff92838511620003ea5736602386011215620003ea57848201359484861162000c1f5760249560059181831b9288848301019036821162000c1b578935620008a8620022db565b620008b262002321565b60ff60255460101c161562000bd957620008cf81601d54620022fd565b6010541062000b9757338952602094601e865260ff888b20541662000b555787513387820190815260208101849052906200091881604084015b03601f198101835282620021e5565b51902093885194878601908152878652898601809d87821091111762000b4157958c92620009568f98858d5288519020948a601c549c0190620021e5565b8d5260609601878688015b83831062000b3057505050509589965b8b51881015620009ca5787841b85018601519081811015620009bc578b528652878a205b966000198114620009aa576001019662000971565b634e487b7160e01b8b5260118a528c8bfd5b908b528652878a2062000995565b888a8e8d95948a940362000b0057600b54835163a9059cbb60e01b815233848201908152602081018890529091869183916001600160a01b03169082908b90829060400103925af190811562000af657879162000ac2575b501562000a82575050907fa8ed4395998413199a74f02f5afa601e64b305c8d81930efde25adb44555a8ca9162000a5c84601d54620022fd565b601d55338552601e8252808520600160ff19825416179055519283523392a26001805580f35b606493601d9293519362461bcd60e51b85528401528201527f546f6b656e41697264726f703a205472616e73666572206661696c65640000006044820152fd5b62000ae79150853d871162000aee575b62000ade8183620021e5565b81019062002524565b8762000a22565b503d62000ad2565b84513d89823e3d90fd5b606493600d9293519362461bcd60e51b85528401528201526c24b73b30b634b210383937b7b360991b6044820152fd5b823581529181019189910162000961565b8d60418c634e487b7160e01b600052526000fd5b875162461bcd60e51b8152808a01879052601d818e01527f4d65726b6c6520436c61696d3a20416c726561647920636c61696d65640000006044820152606490fd5b865162461bcd60e51b81526020818a0152601c818d01527f4d65726b6c6520436c61696d3a20496e76616c696420616d6f756e74000000006044820152606490fd5b865162461bcd60e51b81526020818a01819052818d01527f4d65726b6c6520526f6f7420686173206e6f74206265656e20757064617465646044820152606490fd5b8780fd5b8380fd5b80fd5b83915034620003ea5760208060031936011262000c1f5762000c4762002191565b903385526023815262000c65600160ff86882054161515146200243f565b62000c7860ff60255460081c16620024d7565b62000c8960065460155490620023a0565b92831562000d875762000cf89082906001600160a01b0362000cbf898080808b8b87165af162000cb8620023ae565b50620023f2565b600b54168589601254938a519687958694859363a9059cbb60e01b8552840160209093929193604081019460018060a01b031681520152565b03925af1801562000d7d57917f8291c2165fb22f13d0ed7fc85f1f2ac23027102c70d95f9459c42a59e241eaa5959162000d549362000d5a575b5050516001600160a01b03909216825260208201929092529081906040820190565b0390a180f35b8162000d7492903d1062000aee5762000ade8183620021e5565b50868062000d32565b85513d88823e3d90fd5b60649185519162461bcd60e51b835282015260126024820152714e6f204d4e5420746f20776974686472617760701b6044820152fd5b8284346200030b57816003193601126200030b5760209060ff60255460101c1690519015158152f35b8284346200030b57816003193601126200030b576020906024549051908152f35b8284346200030b57816003193601126200030b576020906011549051908152f35b8284346200030b57816003193601126200030b576020906013549051908152f35b9050346200030b57826003193601126200030b5762000e6762002191565b602435916001600160a01b03808416840362000fd6573385526020906023825262000e9d600160ff89892054161515146200243f565b62000ead60195442101562002345565b8316908651946370a0823160e01b865230848701528186602481865afa95861562000fcc57908791829762000f8f575b50885163a9059cbb60e01b8482019081526001600160a01b0390921660248201526044810188905262000f14816064810162000909565b519082855af11562000f855784513d62000f7b5750803b155b62000f6557505092516001600160a01b03909316835260208301529060008051602062003fb383398151915290806040810162000d54565b8551635274afe760e01b81529182015260249150fd5b6001141562000f2d565b85513d86823e3d90fd5b83809298508193503d831162000fc4575b62000fac8183620021e5565b8101031262000fc057869051953862000edd565b8680fd5b503d62000fa0565b88513d89823e3d90fd5b600080fd5b8284346200030b57816003193601126200030b57602090601a549051908152f35b8284346200030b57816003193601126200030b57905490516001600160a01b039091168152602090f35b8284346200030b57816003193601126200030b5760209060ff60255460081c1690519015158152f35b8284346200030b57816003193601126200030b57602080913384526023825262001084600160ff83872054161515146200243f565b6200108e620022db565b835460ff60a01b1916600160a01b17845580513381527f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258938491a151338152a180f35b8284346200030b5760203660031901126200030b5760209160ff9082906001600160a01b036200110062002191565b1681526022855220541690519015158152f35b8284346200030b5760203660031901126200030b5760209181906001600160a01b036200113f62002191565b1681526021845220549051908152f35b50503462000c23578060031936011262000c23575080516000916009546200117781620021a8565b808452602091600190818116908115620012195750600114620011b9575b505050620011aa82620011b5940383620021e5565b51918291826200221e565b0390f35b600960009081529295507f6e1540171b6c0c960b71a7020d9f60077f6af931a8bbf590da0223dacf75c7af5b828410620012055750505082620011b594620011aa928201019462001195565b8054868501880152928601928101620011e5565b60ff1916868501525050151560051b8301019250620011aa82620011b562001195565b823462000c23578060031936011262000c23576200125962002269565b600080546001600160a01b0319811682556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b8284346200030b57816003193601126200030b576020906016549051908152f35b83915034620003ea5782600319360112620003ea5760209250549051908152f35b50503462000c23578060031936011262000c23575080516000916008546200130481620021a8565b8084526020916001908181169081156200121957506001146200133657505050620011aa82620011b5940383620021e5565b600860009081529295507ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee35b828410620013825750505082620011b594620011aa928201019462001195565b805486850188015292860192810162001362565b8284346200030b57816003193601126200030b5733825260209160238352600193620013cc8560ff85852054161515146200243f565b60175493620013de8542101562002345565b600c54620017f9576006546005548110620017b657620014066200142e9160035490620024a2565b9586600c55620014276200141d600d5489620024a2565b91601854620023a0565b90620024b6565b601a55835190611a749586830167ffffffffffffffff9784821089831117620017a3576200253f8539608081528592600854996200146c8b620021a8565b9a8b608085015260a09082811690816000146200178457506001146200172d575b5085969798999a5082850382840152889460095491620014ad83620021a8565b808352928181169081156200170e5750600114620016b0575b505060128a840152505060600152039083f08015620016a657602580546301000000600160b81b031916601892831b6301000000600160b81b03161790819055600a80546001600160a01b03199081169290931c6001600160a01b03169182179055600c5485518281526020810182905291969290918791907ff1ed35d2dc9ff575d72c135a298439ab33ccca01a400625539dbbd42099fd03f9080604081010390a1600b541617600b55853b1562000c1f5784516340c10f1960e01b81523084820190815260208101929092529495939493859185919082908490829060400103925af1801562000f85576200167d575b600c54855130815260208101829052859162001668917f36bf5aa3964be01dbd95a0154a8930793fe68353bdc580871ffb2c911366bbc790604090a16103e862001653816200160a600d5485620024a2565b049283600e55826200161f600f5483620024a2565b04601055826200163260115483620024a2565b0460125582620016466013548093620024a2565b04601455600654620024a2565b046015556200142760185460175490620023a0565b601a5561010061ff0019602554161760255580f35b82116200169357508252620016688380620015b8565b634e487b7160e01b835260419052602482fd5b83513d84823e3d90fd5b929395509060098a527f6e1540171b6c0c960b71a7020d9f60077f6af931a8bbf590da0223dacf75c7af928a935b828510620016f75750505001019160608a8080620014c6565b8054858501870152899850938501938101620016de565b60ff191685840152505090151560051b0101925060608a8080620014c6565b60088952909450877ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee35b8c8210620017705750999a508a9983010193856200148d565b805485830184015290830190860162001757565b60ff19168583015250999a8b9a90151560051b8401019450856200148d565b634e487b7160e01b875260418652602487fd5b845162461bcd60e51b8152808401839052601860248201527f49444f20616d6f756e74206973206e6f7420656e6f75676800000000000000006044820152606490fd5b835162461bcd60e51b815291820152601760248201527f546f6b656e204220686173206265656e206d696e746564000000000000000000604482015260649150fd5b8284346200030b57816003193601126200030b576020906017549051908152f35b8284346200030b57816003193601126200030b57600b5490516001600160a01b039091168152602090f35b8284346200030b57816003193601126200030b5760ff6020925460a01c1690519015158152f35b83915034620003ea5782600319360112620003ea57620018cd620022db565b620018d762002321565b601754620018e88142101562002345565b601954421162001a92576200190560ff60255460081c16620024d7565b429060185480831162001a86575b506200195e6200194c620019426200196893338952602095868052888a205491821562001a7d575b50620023a0565b601a5490620024a2565b338752601f84528587205490620024a2565b60065490620024b6565b91821562001a4657600b54845163a9059cbb60e01b81523392810192835260208301859052918391839182900360400190829089906001600160a01b03165af1801562001a3c579160219162001a10959362001a1a575b5082518481527fd8138f8a3f377c5259ca548e70e4c2de94f129f5a11036a15b69513cba2b426a823392a2338652808052428387205552832062001a05828254620022fd565b9055602454620022fd565b6024556001805580f35b62001a3490823d841162000aee5762000ade8183620021e5565b5086620019bf565b84513d87823e3d90fd5b60649184519162461bcd60e51b83528201526013602482015272139bc818db185a5b58589b1948185b5bdd5b9d606a1b6044820152fd5b91508a6200193b565b91506200195e62001913565b506020608492519162461bcd60e51b8352820152602960248201527f436c61696d2074696d65206d757374206265206265666f726520636c61696d206044820152686f7665722074696d6560b81b6064820152fd5b8284346200030b57816003193601126200030b576020906015549051908152f35b8284346200030b57816003193601126200030b57602090600f549051908152f35b8284346200030b57816003193601126200030b576020906018549051908152f35b83915034620003ea5782600319360112620003ea57338352602360205262001b7d600160ff84862054161515146200243f565b82549060ff8260a01c161562001bce575060ff60a01b1916825580513381527f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa9160209183908390a151338152a180f35b8251638dfc202b60e01b8152fd5b8284346200030b57816003193601126200030b576020906010549051908152f35b8284346200030b57816003193601126200030b576020906003549051908152f35b8284346200030b57816003193601126200030b5760025490516001600160a01b039091168152602090f35b8284346200030b57816003193601126200030b57602090601c549051908152f35b8284346200030b57816003193601126200030b576020906014549051908152f35b83915034620003ea5782600319360112620003ea5762001caa620022db565b62001cb462002321565b62001cc460175442101562002345565b600654600554111562001d8c57338352601f6020528183205490811562001d5557509060008051602062003fb383398151915291338452601f602052838281205562001d1381600654620023a0565b60065562001d2c8480808085335af162000cb8620023ae565b3384526022602052818420600160ff198254161790558151908482526020820152a16001805580f35b606490602084519162461bcd60e51b83528201526011602482015270139bc819195c1bdcda5d08185b5bdd5b9d607a1b6044820152fd5b6020606492519162461bcd60e51b835282015260136024820152721a591bc81b9bdd08199d5b1b0b19985a5b1959606a1b6044820152fd5b8284346200030b57816003193601126200030b57602090600d549051908152f35b8284346200030b57816003193601126200030b57602090600e549051908152f35b8284346200030b57602080600319360112620003ea5762001e2662002191565b3384526023825262001e43600160ff85872054161515146200243f565b60255460ff811662001f7c5760ff62001e709162001e6660175442101562002345565b60081c16620024d7565b60145494851562001f3957600b54845163a9059cbb60e01b81526001600160a01b03848116938201938452602084019890985295968796909290918591839185169082908a90829060400103925af1801562000d7d57958062001efa948194829460008051602062003fb38339815191529a62001f17575b5060155491165af162000cb8620023ae565b601554825191858352820152a1600160ff19602554161760255580f35b62001f3190893d8b1162000aee5762000ade8183620021e5565b508b62001ee8565b835162461bcd60e51b8152908101839052601760248201527f66656520697320302c63616e27742077697468647261770000000000000000006044820152606490fd5b835162461bcd60e51b8152808701849052601460248201527313dddb995c881a185cc81dda5d1a191c985dd95960621b6044820152606490fd5b8284346200030b5760203660031901126200030b5760209160ff9082906001600160a01b0362001fe562002191565b1681526023855220541690519015158152f35b8284346200030b57816003193601126200030b576020906012549051908152f35b8284346200030b5760203660031901126200030b5760209160ff9082906001600160a01b036200204862002191565b168152601e855220541690519015158152f35b90508234620003ea5780600319360112620003ea57813591338452602360205262002091600160ff84872054161515146200243f565b60255490620020a660ff8360081c16620024d7565b60105460243503620021425760ff8260101c16620020ff5750601c83905562ff000019166201000017602555519081527f90004c04698bc3322499a575ed3752dd4abf33e0a7294c06a787a0fe01bea94190602090a180f35b606490602084519162461bcd60e51b8352820152601c60248201527f4d65726b6c6520526f6f7420686173206265656e2075706461746564000000006044820152fd5b608490602084519162461bcd60e51b8352820152602360248201527f4d65726b6c6520726f6f7420416d6f756e74203a20496e76616c696420616d6f6044820152621d5b9d60ea1b6064820152fd5b600435906001600160a01b038216820362000fd657565b90600182811c92168015620021da575b6020831014620021c457565b634e487b7160e01b600052602260045260246000fd5b91607f1691620021b8565b90601f8019910116810190811067ffffffffffffffff8211176200220857604052565b634e487b7160e01b600052604160045260246000fd5b6020808252825181830181905290939260005b8281106200225457505060409293506000838284010152601f8019910116010190565b81810186015184820160400152850162002231565b6000546001600160a01b031633036200227e57565b60405163118cdaa760e01b8152336004820152602490fd5b156200229e57565b60405162461bcd60e51b8152602060048201526015602482015274125113c81d1a5b59481a5cc81b9bdd081d985b1a59605a1b6044820152606490fd5b60ff60005460a01c16620022eb57565b60405163d93c066560e01b8152600490fd5b919082018092116200230b57565b634e487b7160e01b600052601160045260246000fd5b60026001541462002333576002600155565b604051633ee5aeb560e01b8152600490fd5b156200234d57565b60405162461bcd60e51b815260206004820152602560248201527f436c61696d2074696d65206d7573742062652061667465722069646f20656e646044820152642074696d6560d81b6064820152608490fd5b919082039182116200230b57565b3d15620023ed573d9067ffffffffffffffff8211620022085760405191620023e1601f8201601f191660200184620021e5565b82523d6000602084013e565b606090565b15620023fa57565b60405162461bcd60e51b815260206004820152601c60248201527f4e617469766520546f6b656e205472616e73666572204661696c6564000000006044820152606490fd5b156200244757565b60405162461bcd60e51b815260206004820152602d60248201527f546f6b656e204469737472696275746f723a3a6f6e6c7953656e64557365723a60448201526c102737ba1029b2b7322ab9b2b960991b6064820152608490fd5b818102929181159184041417156200230b57565b8115620024c1570490565b634e487b7160e01b600052601260045260246000fd5b15620024df57565b60405162461bcd60e51b815260206004820152601b60248201527f546f6b656e204220686173206e6f74206265656e206d696e74656400000000006044820152606490fd5b9081602091031262000fd65751801515810362000fd6579056fe6101a0604081815234620004d95762001a748038038091620000228286620004de565b8439820191608081840312620004d95780516001600160401b039390848111620004d957816200005491840162000527565b6020918284015190868211620004d9576200007191850162000527565b91848401519360ff85168503620004d957606001519285519686880188811082821117620003e457875260019283895280890193603160f81b85528551838111620003e45760038054918383811c93168015620004ce575b85841014620004b857601f928381116200046d575b5080858482116001146200040657600091620003fa575b5060001982841b1c191690841b1781555b855191858311620003e45760049687548581811c91168015620003d9575b87821014620003c45782811162000379575b50859184116001146200030e5793839491849260009562000302575b50501b92600019911b1c19161783555b6200016d8562000582565b936101209485526200017f8a62000727565b95610140968752828151910120998a60e0525190209861010099808b524660a0528951928301917f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f83528a84015260608301524660808301523060a083015260a0825260c082019282841090841117620002ed57828952815190206080523060c0528515620002d65750506101609384523315620002bf575060088054336001600160a01b0319821681179092559551956001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a36101809384526111f595866200087f873960805186610f13015260a05186610fdf015260c05186610edd015260e05186610f6201525185610f88015251846104a5015251836104cf01525182818161074e01526107f9015251816108360152f35b6024906000875191631e4fbdf760e01b8352820152fd5b63392e1e2760e01b8252600060c490910152602490fd5b604184634e487b7160e01b6000525260246000fd5b01519350388062000152565b9190601f198416928860005284876000209460005b898983831062000361575050501062000346575b50505050811b01835562000162565b01519060f884600019921b161c191690553880808062000337565b86860151895590970196948501948893500162000323565b88600052866000208380870160051c820192898810620003ba575b0160051c019086905b828110620003ad57505062000136565b600081550186906200039d565b9250819262000394565b602289634e487b7160e01b6000525260246000fd5b90607f169062000124565b634e487b7160e01b600052604160045260246000fd5b905089015138620000f5565b60008481528781208794509190601f19841690898e5b838310620004555750505083116200043c575b5050811b01815562000106565b8b015160001983861b60f8161c1916905538806200042f565b84015185558996909401939283019201898e6200041c565b82600052856000208480840160051c820192888510620004ae575b0160051c019085905b828110620004a1575050620000de565b6000815501859062000491565b9250819262000488565b634e487b7160e01b600052602260045260246000fd5b92607f1692620000c9565b600080fd5b601f909101601f19168101906001600160401b03821190821017620003e457604052565b60005b838110620005165750506000910152565b818101518382015260200162000505565b81601f82011215620004d95780516001600160401b038111620003e457604051926200055e601f8301601f191660200185620004de565b81845260208284010111620004d9576200057f916020808501910162000502565b90565b8051602091908281101562000602575090601f825111620005c05780825192015190808310620005b157501790565b82600019910360031b1b161790565b604490620005f49260405193849263305a27a960e01b84528060048501528251928391826024870152868601910162000502565b601f01601f19168101030190fd5b6001600160401b038111620003e4576005928354926001938481811c911680156200071c575b83821014620004b857601f8111620006e5575b5081601f84116001146200067b57509282939183926000946200066f575b50501b916000199060031b1c191617905560ff90565b01519250388062000659565b919083601f1981168760005284600020946000905b88838310620006ca5750505010620006b0575b505050811b01905560ff90565b015160001960f88460031b161c19169055388080620006a3565b85870151885590960195948501948793509081019062000690565b8560005284601f846000209201871c820191601f8601881c015b8281106200070f5750506200063b565b60008155018590620006ff565b90607f169062000628565b805160209081811015620007545750601f825111620005c05780825192015190808310620005b157501790565b906001600160401b038211620003e457600654926001938481811c9116801562000873575b83821014620004b857601f811162000839575b5081601f8411600114620007cd5750928293918392600094620007c1575b50501b916000199060031b1c19161760065560ff90565b015192503880620007aa565b919083601f198116600660005284600020946000905b888383106200081e575050501062000804575b505050811b0160065560ff90565b015160001960f88460031b161c19169055388080620007f6565b858701518855909601959485019487935090810190620007e3565b600660005284601f84600020920160051c820191601f860160051c015b828110620008665750506200078c565b6000815501859062000856565b90607f16906200077956fe6080604081815260048036101561001557600080fd5b600092833560e01c90816306fdde03146108e057508063095ea7b3146108b657806318160ddd1461089757806323b872dd1461085a578063313ce5671461081c578063355274ea146107e15780633644e515146107bd57806340c10f19146106c857806342966c68146106aa57806370a0823114610673578063715018a61461061657806379cc6790146105e35780637ecebe00146105ab57806384b0196e1461048e5780638da5cb5b1461046557806395d89b4114610377578063a9059cbb14610346578063d505accf146101de578063dd62ed3e146101915763f2fde38b146100ff57600080fd5b3461018d57602036600319011261018d576101186109f7565b90610121610a28565b6001600160a01b03918216928315610177575050600854826bffffffffffffffffffffffff60a01b821617600855167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08380a380f35b51631e4fbdf760e01b8152908101849052602490fd5b8280fd5b5050346101da57806003193601126101da57806020926101af6109f7565b6101b7610a12565b6001600160a01b0391821683526001865283832091168252845220549051908152f35b5080fd5b508290346101da5760e03660031901126101da576101fa6109f7565b610202610a12565b906044359260643560843560ff811681036103425781421161032b5760018060a01b0390818516928389526007602052898920908154916001830190558a519060208201927f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98452868d840152858a1660608401528a608084015260a083015260c082015260c0815260e0810181811067ffffffffffffffff821117610318578b525190206102e6916102dd916102b7610eda565b908c519161190160f01b83526002830152602282015260c43591604260a4359220610dc5565b90929192610e55565b168181036102fd57866102fa878787610bc0565b80f35b87516325c0072360e11b815292830152602482015260449150fd5b634e487b7160e01b8b526041875260248bfd5b875163313c898160e11b8152808401839052602490fd5b8680fd5b5050346101da57806003193601126101da576020906103706103666109f7565b6024359033610ae2565b5160018152f35b50903461018d578260031936011261018d57805183819490845461039a81610a54565b9182855260209660019288848216918260001461043b5750506001146103e0575b85886103dc896103cd848a0385610ac0565b519282849384528301906109b7565b0390f35b815286935091907f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b5b82841061042357505050820101816103cd6103dc386103bb565b8054848a018601528895508794909301928101610409565b60ff19168882015294151560051b870190940194508593506103cd92506103dc91503890506103bb565b5050346101da57816003193601126101da5760085490516001600160a01b039091168152602090f35b50903461018d578260031936011261018d576104c97f0000000000000000000000000000000000000000000000000000000000000000611005565b926104f37f0000000000000000000000000000000000000000000000000000000000000000611102565b908251926020928385019585871067ffffffffffffffff8811176105985750928061054e838896610541998b9996528686528151998a99600f60f81b8b5260e0868c015260e08b01906109b7565b91898303908a01526109b7565b924660608801523060808801528460a088015286840360c088015251928381520193925b82811061058157505050500390f35b835185528695509381019392810192600101610572565b634e487b7160e01b845260419052602483fd5b5050346101da5760203660031901126101da5760209181906001600160a01b036105d36109f7565b1681526007845220549051908152f35b5050346101da57366003190112610613576102fa6105ff6109f7565b6024359061060e823383610c53565b610d26565b80fd5b833461061357806003193601126106135761062f610a28565b600880546001600160a01b0319811690915581906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b5050346101da5760203660031901126101da5760209181906001600160a01b0361069b6109f7565b16815280845220549051908152f35b8382346101da5760203660031901126101da576102fa903533610d26565b50903461018d578060031936011261018d576106e26109f7565b602435906106ee610a28565b6001600160a01b03169081156107a65760025481810180911161079357602086927fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef926002558484528382528584208181540190558551908152a36002547f000000000000000000000000000000000000000000000000000000000000000091828211610779578480f35b5163279e7e1560e21b815292830152602482015260449150fd5b634e487b7160e01b865260118552602486fd5b825163ec442f0560e01b8152808501869052602490fd5b5050346101da57816003193601126101da576020906107da610eda565b9051908152f35b5050346101da57816003193601126101da57602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b5050346101da57816003193601126101da576020905160ff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b5050346101da5760603660031901126101da5760209061037061087b6109f7565b610883610a12565b60443591610892833383610c53565b610ae2565b5050346101da57816003193601126101da576020906002549051908152f35b5050346101da57806003193601126101da576020906103706108d66109f7565b6024359033610bc0565b8484346101da57816003193601126101da57828260035461090081610a54565b90818452602095600191878382169182600014610990575050600114610934575b5050506103dc92916103cd910385610ac0565b9190869350600383527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5b82841061097857505050820101816103cd6103dc610921565b8054848a01860152889550879490930192810161095f565b60ff19168782015293151560051b860190930193508492506103cd91506103dc9050610921565b919082519283825260005b8481106109e3575050826000602080949584010152601f8019910116010190565b6020818301810151848301820152016109c2565b600435906001600160a01b0382168203610a0d57565b600080fd5b602435906001600160a01b0382168203610a0d57565b6008546001600160a01b03163303610a3c57565b60405163118cdaa760e01b8152336004820152602490fd5b90600182811c92168015610a84575b6020831014610a6e57565b634e487b7160e01b600052602260045260246000fd5b91607f1691610a63565b6040810190811067ffffffffffffffff821117610aaa57604052565b634e487b7160e01b600052604160045260246000fd5b90601f8019910116810190811067ffffffffffffffff821117610aaa57604052565b916001600160a01b03808416928315610ba75716928315610b8e5760009083825281602052604082205490838210610b5c575091604082827fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef958760209652828652038282205586815220818154019055604051908152a3565b60405163391434e360e21b81526001600160a01b03919091166004820152602481019190915260448101839052606490fd5b60405163ec442f0560e01b815260006004820152602490fd5b604051634b637e8f60e11b815260006004820152602490fd5b6001600160a01b03908116918215610c3a5716918215610c215760207f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925918360005260018252604060002085600052825280604060002055604051908152a3565b604051634a1406b160e11b815260006004820152602490fd5b60405163e602df0560e01b815260006004820152602490fd5b9160018060a01b038093169160009383855260016020526040938486209183169182875260205284862054926000198403610c92575b50505050505050565b848410610cf657508015610cde578115610cc657855260016020528385209085526020520391205538808080808080610c89565b8451634a1406b160e11b815260048101879052602490fd5b845163e602df0560e01b815260048101879052602490fd5b8551637dc7a0d960e11b81526001600160a01b039190911660048201526024810184905260448101859052606490fd5b906001600160a01b038216908115610ba75760009282845283602052604084205490828210610d935750817fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef926020928587528684520360408620558060025403600255604051908152a3565b60405163391434e360e21b81526001600160a01b03919091166004820152602481019190915260448101829052606490fd5b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411610e4957926020929160ff608095604051948552168484015260408301526060820152600092839182805260015afa15610e3d5780516001600160a01b03811615610e3457918190565b50809160019190565b604051903d90823e3d90fd5b50505060009160039190565b6004811015610ec45780610e67575050565b60018103610e815760405163f645eedf60e01b8152600490fd5b60028103610ea25760405163fce698f760e01b815260048101839052602490fd5b600314610eac5750565b602490604051906335e2f38360e21b82526004820152fd5b634e487b7160e01b600052602160045260246000fd5b307f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03161480610fdc575b15610f35577f000000000000000000000000000000000000000000000000000000000000000090565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260a0815260c0810181811067ffffffffffffffff821117610aaa5760405251902090565b507f00000000000000000000000000000000000000000000000000000000000000004614610f0c565b60ff81146110435760ff811690601f8211611031576040519161102783610a8e565b8252602082015290565b604051632cd44ac360e21b8152600490fd5b5060405160055481600061105683610a54565b8083526020936001908181169081156110e25750600114611083575b505061108092500382610ac0565b90565b9093915060056000527f036b6384b5eca791c62761152d0c79bb0604c104a5fb6f4eb0703f3154bb3db0936000915b8183106110ca57505061108093508201013880611072565b855487840185015294850194869450918301916110b2565b91505061108094925060ff191682840152151560051b8201013880611072565b60ff81146111245760ff811690601f8211611031576040519161102783610a8e565b5060405160065481600061113783610a54565b8083526020936001908181169081156110e2575060011461116057505061108092500382610ac0565b9093915060066000527ff652222313e28459528d920b65115c16c04f3efc82aaedc97be59f3f377c0d3f936000915b8183106111a757505061108093508201013880611072565b8554878401850152948501948694509183019161118f56fea2646970667358221220b64db582d6af9f75bc23d8de10894aeecf95c312858f780c5a47c1dcf10cf27b64736f6c63430008150033884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a9424364a264697066735822122007fa52f6772befb284810d070532b387409068aa195693444f4fcca0298cd32f64736f6c63430008150033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003e80000000000000000000000000000000000000000000000a968163f0a57b40000000000000000000000000000000000000000000000000010f0cf064dd5920000000000000000000000000000000000000000000000000000ad78ebc5ac620000000000000000000000000000000000000000000000000000000000000000001c00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000006731fb190000000000000000000000000000000000000000000000000000000067334c5d00000000000000000000000000000000000000000000000000000000000001e0000000000000000000000000000000000000000000000000000000000000001400000000000000000000000000000000000000000000000000000000000001f400000000000000000000000000000000000000000000000000000000000000000000000000000000000000004b08a1e913174e2522797793e2ee0c7eaab817b30000000000000000000000000000000000000000000000000000000000000003537573000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000035375730000000000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : _idoTokenA (address): 0x0000000000000000000000000000000000000000
Arg [1] : _idoTokenAPrice (uint256): 16000
Arg [2] : _idoTokenAMaxAmount (uint256): 50000000000000000000000
Arg [3] : _idoTokenAMinAmount (uint256): 5000000000000000000000
Arg [4] : _idoMaxAmountPerAddress (uint256): 200000000000000000000
Arg [5] : _tokenName (string): Sus
Arg [6] : _tokenSymbol (string): Sus
Arg [7] : _idoStartTime (uint256): 1731328793
Arg [8] : _idoEndTime (uint256): 1731415133
Arg [9] : _tokenRewardClaimRate (uint256): 480
Arg [10] : _tokenRewardCreaterRate (uint256): 20
Arg [11] : _tokenDexRate (uint256): 500
Arg [12] : _tokenFeeRate (uint256): 0
Arg [13] : factoryOwner (address): 0x4B08a1E913174e2522797793E2EE0c7EaAB817b3
-----Encoded View---------------
18 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [1] : 0000000000000000000000000000000000000000000000000000000000003e80
Arg [2] : 000000000000000000000000000000000000000000000a968163f0a57b400000
Arg [3] : 00000000000000000000000000000000000000000000010f0cf064dd59200000
Arg [4] : 00000000000000000000000000000000000000000000000ad78ebc5ac6200000
Arg [5] : 00000000000000000000000000000000000000000000000000000000000001c0
Arg [6] : 0000000000000000000000000000000000000000000000000000000000000200
Arg [7] : 000000000000000000000000000000000000000000000000000000006731fb19
Arg [8] : 0000000000000000000000000000000000000000000000000000000067334c5d
Arg [9] : 00000000000000000000000000000000000000000000000000000000000001e0
Arg [10] : 0000000000000000000000000000000000000000000000000000000000000014
Arg [11] : 00000000000000000000000000000000000000000000000000000000000001f4
Arg [12] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [13] : 0000000000000000000000004b08a1e913174e2522797793e2ee0c7eaab817b3
Arg [14] : 0000000000000000000000000000000000000000000000000000000000000003
Arg [15] : 5375730000000000000000000000000000000000000000000000000000000000
Arg [16] : 0000000000000000000000000000000000000000000000000000000000000003
Arg [17] : 5375730000000000000000000000000000000000000000000000000000000000
Net Worth in USD
Net Worth in MNT
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.